Sign In  |  Register  |  About Menlo Park  |  Contact Us

Menlo Park, CA
September 01, 2020 1:28pm
7-Day Forecast | Traffic
  • Search Hotels in Menlo Park

  • CHECK-IN:
  • CHECK-OUT:
  • ROOMS:

This solar array expands itself at the right temperature

Wouldn't it be nice to have a solar panel that's only there when the sun shines on it? That's the idea behind this research project, which uses shape-shifting materials to make a solar panel grow from a compressed state to an expanded one with nothing more than a change in temperature.

Wouldn’t it be nice to have a solar panel that’s only there when the sun shines on it? That’s the idea behind this research project, which uses shape-shifting materials to make a solar panel grow from a compressed state to an expanded one with nothing more than a change in temperature.

The flower-like prototype device is made of what’s called a “shape-memory polymer,” a material that can be shaped when cool to one form, then when heated will attempt to return to its original, natural configuration. In this case the cool form is a compressed disc, and the warm one is a much wider one.

The transition (demonstrated here in warm water for simplicity) takes less than a minute. It’s guided by a network of hinged joints, the structure of which was inspired by the children’s toy known as a Hoberman sphere, which changes from a small, spiky ball to a larger spherical one when thrown.

circle1

The cooled-down material would stay rigid during, say, deployment on a satellite. Then when the satellite enters the sun, the mechanism would bloom into the full-sized array, no power necessary. That would potentially save space on a satellite that can’t quite fit a battery or spare solar array to kick-start a larger one.

For now the transformation is one-way; the larger disc must be manually folded back into the smaller configuration — but one can imagine how once powered up, a separate mechanism could accomplish that, stowing itself away until the next chance to absorb some sunlight appears.

Don’t expect to see this on any spacecraft next year, but it’s definitely a cool (and warm) idea that could prove more than a little useful for small satellites and the like in the future. And who knows? Maybe you’ll have a garden of these little blooming arrays on your roof before that.

The research, from Caltech and ETHZ, is documented in the journal Physics Review Applied.

Data & News supplied by www.cloudquote.io
Stock quotes supplied by Barchart
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the following
Privacy Policy and Terms and Conditions.
 
 
Copyright © 2010-2020 MenloPark.com & California Media Partners, LLC. All rights reserved.